The null-space method and its relationship with matrix factorizations for sparse saddle point systems

نویسندگان

  • T Rees
  • J Scott
  • TYRONE REES
  • JENNIFER SCOTT
چکیده

The null-space method for solving saddle point systems of equations has long been used to transform an indefinite system into a symmetric positive definite one of smaller dimension. A number of independent works in the literature have identified the equivalence of the null-space method and matrix factorizations. In this report, we review these findings, highlight links between them, and bring them into a unified framework. We also investigate the suitability of using null-space based factorizations to derive sparse direct methods, and present numerical results for both practical and academic problems. Finally, we explore some properties of an incomplete version of one of these factorizations as a preconditioner and provide eigenvalue bounds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Null Space Algorithms for Solving Augmented Systems arising in the Mixed Finite Element Approximation of Saddle Point Problems

We use a Null Space algorithm approach to solve augmented systems produced by the mixed finite element approximation of saddle point problems. We compare the use of an orthogonal factorization technique for sparse matrices with the use of a sparse Gaussian elimination for the computation of the Null Space. Finally, we present the results of the numerical tests which we performed on selected pro...

متن کامل

Augmented Lagrangian Techniques for Solving Saddle Point Linear Systems

We perform an algebraic analysis of a generalization of the augmented Lagrangian method for solution of saddle point linear systems. It is shown that in cases where the (1,1) block is singular, specifically semidefinite, a low-rank perturbation that minimizes the condition number of the perturbed matrix while maintaining sparsity is an effective approach. The vectors used for generating the per...

متن کامل

OPINS: An Orthogonally Projected Implicit Null-Space Method for Singular and Nonsingular Saddle-Point Systems∗

Saddle-point systems appear in many scientific and engineering applications. The systems can be sparse, symmetric or nonsymmetric, and possibly singular. In many of these applications, the number of constraints is relatively small compared to the number of unknowns. The traditional null-space method is inefficient for these systems, because it is expensive to find the null space explicitly. Som...

متن کامل

On the WZ Factorization of the Real and Integer Matrices

The textit{QIF}  (Quadrant Interlocking Factorization) method of Evans and Hatzopoulos solves linear equation systems using textit{WZ}  factorization. The  WZ factorization can be faster than the textit{LU} factorization  because,  it performs the simultaneous evaluation of two columns or two rows. Here, we present a  method for computing the real and integer textit{WZ} and  textit{ZW} factoriz...

متن کامل

An efficient null space inexact Newton method for hydraulic simulation of water distribution networks

Null space Newton algorithms are efficient in solving the nonlinear equations arising in hydraulic analysis of water distribution networks. In this article, we propose and evaluate an inexact Newton method that relies on partial updates of the network pipes’ frictional headloss computations to solve the linear systems more efficiently and with numerical reliability. The update set parameters ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014